
Self-Organizing Maps for Identification of New Inhibitors of P-Glycoprotein

Dominik Kaiser,† Lothar Terfloth,‡ Stephan Kopp,§ Jan Schulz,| Randolf de Laet,| Peter Chiba,§ Gerhard F. Ecker,*,† and
Johann Gasteiger‡

Emerging Focus Pharmacoinformatics, Department of Medicinal Chemistry, UniVersity of Vienna, Althanstrasse 14, 1090 Wien, Austria,
Computer-Chemie-Centrum, Institute of Organic Chemistry, UniVersity of Erlangen-Nuernberg, Germany, Institute of Medical Chemistry,
Medical UniVersity of Vienna, Waehringer Strasse 10, 1090 Wien, Austria, and SPECS and BioSPECS B.V., Fleminglaan 16, 2289 CP
Rijswijk, The Netherlands

ReceiVed May 22, 2006

Self-organizing maps were trained to separate high- and low-active propafenone-type inhibitors of
P-glycoprotein. The trained maps were subsequently used to identify highly active compounds in a virtual
screen of the SPECS compound library.

Introduction

ATP-dependent transport proteins have been shown to play
a major role both for bioavailability of drugs1 and for develop-
ment of drug resistance in bacteria and men.2 In tumor cells,
overexpression of these membrane-bound proteins is responsible
for decreased intracellular accumulation of therapeutically
administered xenotoxins, thus leading to multiple drug resis-
tance. In cancer cells, efflux driven broad spectrum resistance
to chemotherapeutic agents is predominantly mediated by the
ABCB1 gene product P-glycoprotein (P-gp). Inhibition of P-gp
leads to resensitization of multidrug resistant tumor cells in vitro
and was thus considered a promising approach for treatment of
multidrug resistant tumors.3 Currently, several compounds are
in clinical phase III studies. Although these studies have raised
some concerns on the broad clinical use of P-gp inhibitors, there
are still ongoing efforts in identifying new P-gp inhibitors.4 This
is mainly due to the involvement of P-gp in bioavailability and
brain permeation of drugs.5 Thus, a phase I clinical study clearly
showed that the highly active P-gp inhibitor GF 120918 is able
to enhance plasma levels of topotecan by more than 4-fold.6

There are also several patents claiming P-gp inhibitors as
versatile tools for enhancing brain uptake of cns-active drugs.7

One of the major characteristics of P-gp is its promiscuity
(or multispecificity) in the binding of ligands. This is supported
by findings that suggest multiple overlapping binding sites.8

Use of homologous series of compounds identified both
predictive physicochemical parameters and pharmacophoric
substructures.9 CoMFAa and CoMSIA analyses lead to distinct
3D-QSAR models for propafenones10 and phenothiazines.11

Recently, three-dimensional pharmacophore models have been
proposed based on in vitro data for digoxin transport in Caco-2
cells, vinblastine binding in CEM/VLB100 cells, and vinblastine
and calcein accumulation in LLC-PK1 cells.12 Additionally, the
definition of pharmacophores and alignment was utilized using
the genetic algorithm-based similarity program GASP. The
proposed general pharmacophore pattern involves two hydro-
phobic planes, three hydrogen-bond acceptors, and one hydrogen-

bond donor.13 However, applying these models for virtual
screening approaches requires multiconformational three-
dimensional databases.

In recent years, nonlinear methods were also successfully
applied for prediction of polyspecific drug-protein interactions.
These include both feedforward backpropagation artificial neural
networks and support vector machines.14 Recently, Wang et al.
applied unsupervised and supervised learning approaches for
classification of P-glycoprotein substrates and inhibitors.15 In
this paper we describe the use of self-organizing maps (SOMs)
for the discovery of new lead compounds in the field of P-gp
inhibitors.

Results and Discussion

Identification of new lead compounds via in silico screening
of large databases is currently one of the most challenging tasks
in the drug development process. Our approach for identification
of new P-gp inhibitors is based on the simultaneous presentation
of a large compound library (i.e., SPECS) and a training set of
131 P-gp inhibitors covering a broad activity range to a self-
organizing map. The concept is based on the expectation that
compounds co-localizing with highly active drugs from the
training set also show high activity.

The principal ability of SOMs is to obtain a 2D (two-
dimensional)-rendering of a multidimensional space, which
brings similar compounds in close vicinity on the map (i.e.,
within the same neuron). SOMs were successfully applied to
the design of combinatorial libraries, filtering of HTS librar-
ies, and to distinguish drugs from nondrugs.16 In a recent pa-
per, Polansky and co-workers described the use of a SOM
for screening and development of novel artificial sweetener
candidates.17
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Figure 1. Self-organizing map trained using descriptor set for model
1: red, low active; blue, highly active; white, empty.
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First of all, a training set of 131 propafenone-type inhibitors
of P-gp was used to explore the general possibility to distinguish
between compounds with high and low activity using self-
organizing maps. Using 2D autocorrelation vectors based on
seven atom properties, two different models were retrieved that
both showed a good discrimination between compounds of high
and low activity (Figure 1 and Figure 1, Supporting Informa-
tion). Comparison with the results obtained from a principal
component analysis clearly demonstrated the higher ability of
SOMs to separate high- from low-active propafenone-type P-gp
inhibitors (Figure 2).

Thus, for identification of new lead compounds, the 131
propafenone analogs were merged with 134 767 compounds
from the SPECS database, and the complete data set was used
to establish two SOMs under conditions identical to those used
in the runs with the propafenones. Obviously, the size of the
maps had to be adapted to the higher number of compounds to
avoid an unreasonably high number of co-localizations. Table
1 gives the number of SPECS compounds co-localizing with
propafenones obtained with the two models and two different
network sizes. As expected, the number of co-localizations
increases with decreasing network size.

Merging the hit lists from models 1a and 2a, elimination of
duplicates and restriction to compounds which co-localize with
propafenones with an EC50 value< 0.16µmol/L (which include
the top 15% in activity) gave a set of 43 compounds. Twelve
out of these 43 compounds were located in the same neuron as

1 and 2 (Chart 1), the hitherto most active propafenone type
P-gp inhibitors (EC50 ) 0.006 and 0.013µmol/L, respectively).
Some of these virtual screening hits showed an identical
scaffold, which further reduced the number of structurally
diverse hits to seven (Table 2). These compounds were
pharmacologically tested in the daunorubicin efflux assay. The
results show that two of the compounds were highly active,
with EC50 values below 1µmol/L, four compounds had activi-
ties between 1 and 10µmol/L, and only one compound was
inactive.

Conversely, compounds co-localizing with low-active pro-
pafenone analogs were also tested and used as an additional
proof of concept. A total of 22 compounds co-localizing with
the least active propafenones3 (EC50 ) 207µmol/L), 4 (EC50

) 67µmol/L), 5 (EC50 ) 128µmol/L), and6 (EC50 ) 49µmol/
L) were identified. From each subset, the two compounds with
the lowest and highest calculated MlogP values were selected
and the biological activity of these eight compounds was

Figure 2. Plot of the first two principal components of descriptors for
model 1: red squares, low actives; blue triangles, high actives.

Chart 1. Chemical Structure of Highly Active Propafenone
Analogs1 and2

Chart 2. Chemical Structures of Low-Active Propafenone
Analogs3-6

Table 1. Dimensions of the SOMs Used and Number of
Co-Localizations

no.
descriptors dimension

no.
co-localizations

model 1a 21 360× 360 107
model 1b 21 250× 250 243
model 2a 25 360× 360 113
model 2b 25 250× 250 267

Table 2. Chemical Structure and Pharmacological Activity of
Compounds Proposed as Highly Active in the In Silico Screen

a Given in µmol/L. b No effect up to this concentration.
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determined (Chart 2, Table 3). Only one compound showed an
EC50 value below 100µmol/L.

To further prove the concept, the SPECS library was screened
for compounds structurally similar to the two hits7 and12 on
the basis of the Tanimoto index values higher than 0.8. Using
the Tanimoto index ensures that only structurally very similar
compounds are identified. A subset of the compounds was
retrieved and biologically tested. In the case of quinazolinones
7, five out of eight compounds tested showed pharmacological
activity in the micromolar and submicromolar range (Table 4).
Additionally, there was also a good correlation between
calculated MlogP values and log(1/EC50) values found (r )
0.83). This is in agreement with previous findings demonstrating
that lipophilicity is a general predictive factor for P-gp inhibitory
activity.18 In the case of benzothiazoles12, three out of five
compounds tested showed pharmacological activities in the
submicromolar range (Table 5). These results confirmed that
with 7 and12 indeed two new scaffolds for the design of P-gp
inhibitors were identified.

When analyzing the location of compounds7a-7h and12a-
12eon the 250× 250 neurons SOM, most of the highly active
analogs are indeed located in close vicinity to their parent hits
7 and12 (Figure 2, Supporting Information), whereas low-active
derivatives7a, 7b, 12d, and12eare placed differently. However,
it has to be noted that the inactive compound7f is located close
to 7, and the active derivatives7c and12c are not part of the
highly active compound cluster around7 and12. This outlines
the complexity of the method presented and further strengthens
the need for thorough validation procedures.

Conclusion

In this paper we demonstrated that self-organizing maps in
combination with autocorrelation vectors are a versatile tool for
virtual screening of medium-sized compound libraries. Com-
pounds retrieved as potential hits show structural scaffolds
differing from those used in the training set. This method is
therefore suitable for identification of structurally unrelated,
diverse hits and thus represents a versatile tool for scaffold

Table 3. Chemical Structure and Pharmacological Activity of
Compounds Proposed as Inactive in the In Silico Screen

Table 4. Chemical Structure, Chemical Similarity, Calculated MlogP
Values, and Pharmacological Activity of Compounds Structurally
Similar to 7 (AG-690/11972772)

Table 5. Chemical Structure, Chemical Similarity, Calculated LogP
Values, and Pharmacological Activity of Compounds Structurally
Similar to 12 (AN-989/14669159)
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hopping. Further work will prove whether applicability of this
approach extends to other biological targets.

Materials and Methods

Training Set: As a reference data set, our in house library of
131 propafenone-type inhibitors of P-gp was used.19 The data set
comprises phenones, benzofuranes, indanones, and benzopyranes
(Chart 3; chemical structures and EC50 values are given in Table
1, Supporting Information). Compounds were separated into two
activity groups (high activity and low activity) by using a threshold
value of 1µM.

Screening Library: For in silico screening, the SPECS data-
base20 cleaned from salts, duplicates, and compounds with a
molecular weight lower than 100 and higher than 800 was used
(number of compounds remaining: 134 767).

Descriptors: For this study, topological autocorrelation vectors
for a set of atom properties were used as descriptors. The topological
autocorrelation vectorA for the topological distanced (number of
bonds between two atoms) is calculated by

with the topological distance of atomsi andj, dij, and their properties
pi andpj, respectively.

For both data sets, the following atom properties were calculated
using the software package PETRA:21 atom-polarizability (Ri),22

σ- (øσ), π- (øπ), and lone pair electronegatives (ølp),23,24andσ- (qσ),25

π- (qπ),26 and total charges (qtot ) qσ + qπ). Subsequently, the
topological autocorrelation vectors for distances from 0 to 10 bonds
were calculated with AUTOCORR,27 scaled to unit variance, and
used as descriptors for the input vector to the SOM.

Self-Organizing Map: Studies were done with the software
package SONNIA.28 SONNIA is the implementation of a self-
organizing network introduced by Teuvo Kohonen.29 Objects from
a multidimensional space are projected into a space of lower
dimensionality, usually into a 2D plane. In this projection, the
topology of the input space is preserved. Thus, Kohonen neural
networks can be applied to cluster objects for similarity perception.
The training of the network is unsupervised, that is, the property
of interest, here it is the compound’s biological activity, is not used
during the training process. In the course of training, the objects
are randomly presented to the neural network in an iterative manner.
For each iteration step, the winning neuron for the input object is
identified by determining the neuron having the minimumEuclidean
distance to the input object. To improve the response of the network,
the neurons weights are adapted to become more similar to the
input pattern. After termination of training, the response of the
network is calculated for each object of the data set. The projection
of the data set into the 2D space is then performed by mapping
each object into the coordinates of its winning neuron.

Initially, the autocorrelation vectors for each atom property were
used separately to select those descriptors that led to a good
discrimination between active and inactive propafenones. All maps
had a rectangular dimension of 10× 8 neurons. This network size
represents a good compromise between the number of collisions
and the number of empty neurons (Figure 2, Supporting Informa-

tion). Each neuron was color coded according to the activity of the
compounds located in the neuron.

As shown earlier, 2D maps allow one to make full use of the
human pattern recognizing power. By visual inspection of the color-
coded maps (Figure 1), those variables could be selected that led
to the best clustering.30 Best results were obtained with the
descriptorsRi, øσ, qσ, qtot, andølp. Thus, two models were generated
using the following combinations of descriptors:Ri, qσ, øσ (model
1) andRi, qtot, ølp (model 2). This procedure was chosen to keep
the number of descriptors used in a reasonable relation to the
number of training set compounds. Intercorrelated descriptors (r
> 0.95) were removed from the data matrix to avoid redundancy.
Input vectors had 21 dimensions for model 1 and 25 for model 2.

Principal Component Analysis.Principal component analysis
was performed using the software package MOE (Chemical
Computing Group). Both descriptor combinations (from models 1
and 2) were subject to principal component analysis. A plot of the
first two principal components explaining 48.5% of the variance is
shown in Figure 2. Compounds with high activity are represented
as blue triangles and those with low activity as red squares.

Screening of the SPECS Library. Both input files (pro-
pafenones and SPECS-compounds) were merged, and the data were
normalized via z-scaling. Two different network sizes were used
(Table 1), and the SOMs were trained applying the same conditions
as for the small data set of propafenones. In both models, all
compounds of the SPECS library co-localizing with a propafenone-
type P-gp inhibitor were retrieved. Hit selection was performed as
outlined in the Results and Discussion section.

Similarity Search: The SPECS library was converted from the
SD file to a UNITY 4.3 database31 using the “dbimport” command.
Subsequently, the UNITY fingerprints were calculated with “db-
mkscreen”, and the search was done using the SELECTOR
similarity search tool31 with a minimum Tanimoto similarity of 0.8.
Alternatively, we also applied autocorrelation vectors and Euclidian
distance for similarity searching. However, in this case, also
compounds with scaffolds different from the query structure were
retrieved. Thus, the standard SELECTOR protocol was used to
ensure that predominantly compounds with the same basic structural
scaffold were identified.

Calculation of MlogP Values: For calculation of logP values,
the method of Moriguchi et al. was used,32 as implemented in an
spl-macro in the SYBYL molecular modeling package. This method
has been shown to yield very reliable results, especially when
dealing with structurally diverse compounds.

Biological Activity: The pharmacological activity of the com-
pounds was measured in a zero trans efflux protocol using
daunorubicin as the fluorochrome.33 Briefly, multidrug resistant
CCRF vcr1000 cells were incubated with daunorubicin, and the
time-dependent decrease in mean cellular fluorescence was mea-
sured in the absence and presence of various concentrations of the
modulator. EC50 values were calculated from the concentration-
response curve of efflux first-order rate constants (Vmax/Km) plotted
as a function of the modulator concentration. Thus, the effect of
different modulators on the transport rate is measured in a direct
functional assay. Values of newly identified hits are given in Tables
2, 4, and 5 and represent the mean of at least three independently
performed experiments. Generally, interexperimental variation was
below 20%.
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Chart 3. Scaffolds Used for the Training Set
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